RC柱
RC柱の剛性
剛性増大率
軸断面積
柱の軸断面積は袖壁および直交袖壁を考慮し、せん断断面積には直交袖壁は無視し袖壁のみ考慮します。袖壁のヤング係数は母材と同じと仮定します。
断面2次モーメント
柱の断面2次モーメントの算定方法は、下記のいずれかの選択により設定できます 注1)。 $A~C$を選択した場合は、直交壁は無視し、袖壁のみを評価して断面2次モーメントを求めます。求めた断面2次モーメントと元の断面の断面2次モーメントの比率を剛性増大率として設定します。
※「鉄筋・鉄骨の剛性を考慮する」とした場合には剛性増大率は変化せず、剛性増大率を乗じる元となる断面2次モーメントを増大させます。
RC柱の断面性能
鉄筋コンクリート造柱の断面性能の計算は以下によります。
軸断面積( $A_n$)
柱の軸断面積(An)は、鉄筋を考慮して次式により算定します。
$A_n = ({B \cdot (D-t)+B \cdot t+(n-1) \sum \alpha_i}) \cdot \frac{l_0}{l}$$n$:ヤング係数比
$l_0$:可撓長さ(剛域を考慮した長さ)(mm)
$l$:節点間長(mm)
せん断変形用断面積( $A_S$)
$A_s = \frac{B \cdot D}{\kappa}$$κ$:形状係数(=1.2)
断面2次モーメント( $I_e$)
鉄筋コンクリート造柱の断面2次モーメント( $I_e$)は鉄筋を考慮して次式により算定します。
$I_e = \frac{B \cdot D^3}{12}+ \frac{(b-B)t^3}{12}+B \cdot D \cdot (g-D/2)^2+(b-B) \cdot t \cdot (D-t/2-g)^2+(n_r-1) \sum \alpha_i(g-y_i)^2$ $g = \frac{1/2b \cdot D^2+(b-B) \cdot t \cdot (D-t/2)+(n_r-1) \sum \alpha_i \cdot y_i}{B \cdot D+(b-B) \cdot t+(n_r-1) \sum \alpha_i}$$g$:梁下端から図心位置までの距離(mm)
ねじり断面2次モーメント( $J$)
指定により、ねじり剛性を考慮することが可能です。壁、床が取付かない元断面に対してねじり剛性を次式で算定します。
矩形 :
$J = \frac{B^3 \cdot D}{16} \cdot \left[ \frac{16}{3}-3.36 \cdot \frac{B}{D} \cdot \left( 1-\frac{1}{12} \cdot \left( \frac{B}{D} \right)^4 \right) \right]$円形 :
$J = \frac{\pi r^4}{2}$